
Serial No. 363.091

Filing Date 14 December 1994

Inventor John J. McGarry

NOTICE

The above identified patent application is available for licensing. Requests for information should be
addressed to:

Accesion For 1

MTIS
DTiC
Unvuv,
Justific

CRA&I W
TAB D

ation
OFFICE OF NAVAL RESEARCH
DEPARTMENT OF THE NAVY By

Disti'ib CODE OOCC3 jtion /

ARLINGTON VA 22217-5660 Availability Codes

Dist
Avail £

Spe
md/or
cial

Approved tea pushe rsieos«'
Dismb'tttior; UnJUrin:etd

19951108 055
DTIC QUALITY INSPECTED 8

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

Navy Case No. 74966 V\^ec %

QUANTITATIVE SOFTWARE DEVELOPMENT ASSESSMENT

STATEMENT OF GOVERNMENT INTEREST

The invention described herein may be manufactured and used

by or for the Government of the United States of America for

Governmental purposes without the payment of any royalties

thereon or therefor.

BACKGROUND OF THE INVENTION

(1) Field of the Invention

The present invention relates generally to the field of

process management. In particular, it is a method for

quantitatively measuring software processes and products using

metrics describing a process.

(2) Description of the Prior Art

In many commercial settings, the evolution of quantitative

assessment methodologies has led to increased productivity,

better resource management, and higher quality products.

Some attempts have been made in the prior art to apply these

quantitative methodologies in the field of software development.

However, the inherent characteristics of software makes the

application of these principles difficult. Specifically,

quantitative measurement of software development processes and

products is made difficult by the volatility of these projects,

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

the significant effects of interrelated requirements and

constraints, and the difficulty of accurately quantifying

measures of both the amount of software completed and the quality

of the completed software. These difficulties often produce

inconsistent and sometimes erroneous results. These weaknesses

have prevented the application of quantitative assessment

techniques in many commercial development programs. As such,

there is little objective management and technical data available

to support development process control and quality assessment.

SUMMARY OF THE INVENTION

Accordingly, it is an object of the present invention to

effectively evaluate the software development process and related

software products and to generate objective management and

technical data.

It is a further object of the present invention to provide

an overall assessment that quantifies and integrates objective

measures of software development attributes into an aggregate

project profile.

It is a further object of the present invention to be

sensitive to the cost of the quantitative measurements required

during the use of the method.

A still further object of the present invention is to

produce assessment results that can be readily validated, that

are applicable across multiple software development projects, and

that are consistent for all projects.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

Yet another object of the present invention is to complement

the volatile nature of software development by integrating

diverse attribute data and relating both software process and

product issues under a cause-effect relationship framework.

In accordance with these and other objects, a method for

monitoring, measuring, and controlling the evolution of a

software development project is provided. The method includes

software assessment processes, tools, and techniques focused on

the evaluation of the software development processes, development

progress, development resource application, and software product

quality. In particular, the method is based on a software

development assessment structure which includes defined measures

of software process and product attributes within the context of

the software development program constraints, characteristics,

and limitations. The structure integrates software attribute

measures in the general categories of resource application,

development process, and product quality. It incorporates

measurement and evaluation approaches which can be applied during

all phases of the software development life cycle, and which can

be tailored to specific program characteristics and overall

program management and technical objectives.

The- general method of the invention includes defining

software issues, measuring software attributes and generating

indicators thereto, and performing a quantitative assessment of

these indicators. The specific method of the invention includes

identifying and prioritizing software issues, mapping those

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

issues to effective measures, defining the measurement

requirements for software attributes, developing methodologies

for performing measurements of the attributes, performing,

managing and collecting those measurements, defining and

correlating software indicators, clarifying and evaluating issues

with respect to the indicators, correlating process factors with

product factors, and generating recommendations based on the

correlated factors.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing objects and other advantages of the present

invention will become fully understood from the following

detailed description and reference to the appended drawings,

wherein:

FIG. 1 is a top level process flow chart for the

quantitative software assessment method;

FIG. 2 is a depiction of the key interrelations between

software development schedule, resources, capability and

development performance;

FIG. 3 is a listing of commonly measured software

attributes for a typical software development project;

FIG-. 4 is a depiction of a software indicator; and

FIG. 5 is a flow chart for the process-product analysis

sequence.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

m?.srWTPTION OF THE PREFERRED EMBODIMENTS

Referring now to the drawings, and in particular to FIG. 1,

a top level process flow chart for the quantitative software

assessment method 10 is provided. The method incorporates a

sequential process consisting of four phases. The first phase,

Software Issue Definition 11, encompasses the identification and

prioritization of software development issues and the creation of

mappings between these issues and effective measures to generate

attributes quantifying each issue. The second phase, Software

Attribute Measurement 13, encompasses the definition,

measurement, and tracking of software process and product

attributes defined in the first phase. The third phase, Software

Indicator Generation 15, encompasses the instantiation of

quantitative analysis products and related software measurement

attributes. The final phase, Software Quantitative Assessment

17, encompasses the integrative evaluation of the assembled

attributes using multiple tools and techniques within the context

of the developmental program objectives, constraints and

characteristics. Throughout the process, software process and

product attributes are interrelated within the assessment

structure to identify process related software quality impacts

and to identify corrective actions necessary for improvement.

All four phases of the assessment method are specifically

structured to meet several criteria and share several properties.

First, the method is based upon defined quantitative

measures of software process and product attributes measured

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

consistently by a defined measurement methodology during the life

cycle of the product. The method is also flexible and tailorable

to distinct software development program characteristics,

objectives and limitations. In order to achieve this level of

customization, the method encompasses a variety of commercial

measurement and assessment tools including data generation

utilities, software development process models, metrics databases

and utilities, attribute assessment matrices, software product

analyzers, and graphics display interfaces.

The method is assessment driven in that specific issues and

concerns drive the applied software attribute measures and the

analysis focus. The measures selected are specifically chosen to

be non-constrictive. Within the overall assessment method,

different measures can be applied for different projects.

However, each class of measurement is defined and applied

consistently across the development. The consistency of the

method with respect to a given project, the use of multiple

classes of measurement and the use of substantive qualitative

engineering observations ensure valid and objective analysis

results.

Finally, multiple possible target values for each attribute

are tracked corresponding to separate baseline possibilities.

Initially, software attribute measurement results are analyzed on

an attribute by attribute basis, with the actual measured values

for each attribute compared to the possible target values. These

individual attributes are next integrated into an overall profile

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

of the development process and products. These integrative

profiles are used for project tracking and valid cross-project

comparisons.

Referring now to FIG. 2, a depiction of the key inter-

relations between software development schedule, resources,

capability and development performance 21 is provided. These

elements are key issues within the context of the Software Issue

Definition phase 11 of the Quantitative Software Assessment

method 10. The Software Issue Definition phase 11 is the

initial analysis process in the Quantitative Software Assessment

method. It is first implemented during the planning phase prior

to program implementation and continues as the development

process proceeds and software products are designed, developed,

tested, and released. The objective of the Software Issue

Definition phase 11 is to identify and prioritize the software

process and product issues so that measurement and analysis

efforts can be focused and cost effective. It encompasses issue

identification, issue prioritization, and issue to measures

requirements mapping. Issues are initially defined based upon

the schedule 22, resource 24, and technical (software reuse 26

and software process 28) characteristics of a particular software

development program, and the constraints defined in the

relationships between these characteristics. Factors 29, such

as those shown in FIG. 2, can impact both the software function

capability as well as the development productivity, cost per unit

of the product, and the final product quality. Although the

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

Software Issue Definition phase is shown in FIG. 1 as the first

phase of the complete system, it is periodically repeated

throughout the product life cycle to update existing development

issues and to identify and prioritize new issues.

Referring now to FIG. 3, a summary of commonly measured

software process attributes 31 and software product attributes 32

are provided. These attributes are identified during the

Software Issue Definition phase through a variety of commercial

applications including the Software Life Cycle Model (SLIM) and

SLIM control packages from Quantitative Software Management,

Inc., the System Evaluation and Estimation of Resources and

Software Estimation Model packages from Galorath Associates, the

Goal-Question-Metric Paradigm from the University of Maryland,

the Objectives-Principles-Attributes Paradigm from the Virginia

Polytechnic Institute, SASET from the U.S. Navy, the Software

Capacity Maturity Model from the Software Engineering Institute,

and the public domain Software Constructive Cost Model.

Once the specific attributes are identified, they are

recorded individually during the Software Attribute Measurement

phase B. Each attribute is recorded using a defined measurement

methodology. Although the set of attributes required are

flexible- and tailored to each specific development program, the

methodologies for taking the required attributes are strict and

well-defined. The strict methodologies insure quantitative

consistency within the context of the software development

program, and even across programs. Measurements are taken from

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

numerous sources throughout the developmental life cycle and can

be either manually or automatically measured. The attributes

are stored in a metrics database and can be accessed and

manipulated through a variety of commercial tools including

Oracle database utilities, software product attribute measurement

tools, developer financial management methods, project schedule

planning and tracking methods (PERT), and a variety of CASE tools

and Defect database utilities.

Referring now to FIG. 4, a graphical depiction of a

software indicator is provided as an example. A single software

indicator, size expressed in lines of code (the ordinate) over

time, is depicted. Total planned code 41 is shown along with

new planned code 42 and new actual code 43. An indicator may be

generated from an attribute, for example, code size or growth,

defect level, etc. Indicators such as these are the output from

the third phase of the method, the Software Indicator Generation

phase 15. In particular, the Software Indicator Generation phase

15 renders information from the data collected during the

Software Attribute Measurement phase 13 into a form that allows

project managers to easily ascertain progress towards goals,

clarify those goals, and to plan for new contingencies. The

software- indicators generated during this phase are based on both

individual attributes and aggregate measures. These measures are

graphically rendered using the previously collected data (stored

in a metrics database), graphics capable workstations, and

commercial or public domain graphics generation or reporting packages

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

The Software Quantitative Assessment phase 17 is a key

structure in the complete software assessment method. In

particular, during the Software Quantitative Assessment phase 17,

existing software development issues are quantitatively

clarified, new or possible software development issues are

identified, the degree of impact of a given software development

issue is evaluated, process and product attributes are

correlated, and recommendations for improvement are generated.

To achieve these goals, the data provided by all of the other

phases of the method are integrated into an overall profile of

the software development program during this phase. This overall

profile encompasses the quantitative findings within a context of

software engineering principles and specific program

characteristics and observations. Once the overall profile has

been generated, components that demonstrate the highest degree of

development cost, schedule or technical risk are identified and

isolated by comparing attributes generated from multiple

attribute level indicators and by determining which attributes

affect a number of aggregate measures over a period of time. The

overall profiles are also evaluated in the context of the cause

and effect relationships between the software development process

and resultant software products. Development constraints which

can significantly impact the integrity, efficiency, and quality

of the software product are identified.

Referring now to FIG. 5, a flow chart for the process-

product analysis sequence is depicted. The Software Quantitative

10

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

Assessment phase 17 encompasses this sequence. First, as

progress is made, individual product and process attributes 51

are measured to establish the size, effort levels, and cost of

the project. Later in the product life cycle, attributes 53

provide information on productivity and the number of defects in

the product. This information allows resources to be effectively

allocated to products and a level of stable productivity 55 to be

achieved. Finally, a resultant product 56 is generated with a

high level of quality and consistency.

The advantages and new features of the present invention are

numerous. The invention provides a consistent evaluation

approach which can be tailored to many different types of

software development. It is flexible enough to insure cost-

effective implementation. The structure incorporates

quantitative analysis which clearly identifies the causes of

process and product deficiencies. The structure also provides,

based upon software attribute data characteristics, the ability

to project key software development process issues and related

product quality impacts prior to product generation. Most

significantly, the process supports the identification of key

software development issues and risk areas based upon the

integration and evaluation of diverse software attributes.

It will be understood that many additional changes in the

details, materials, steps and arrangement of parts, which have

been herein described and illustrated in order to explain the

nature of the invention, may be made by those skilled in the art

11

1

2

within the principle and scope of the invention

12

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Navy Case No. 74966

QUANTITATIVE SOFTWARE DEVELOPMENT ASSESSMENT

ABSTRACT OF THE DISCLOSURE

A software method for monitoring, measuring, and controlling

the evolution of a software development project is provided. The

method compares quantitative measures of software product and

process attributes with expected and observed product

characteristics over the development life cycle. The resulting

attribute measurements are evaluated in the context of an

overriding issue definition that identifies and prioritizes

software product and process issues. The method includes a set

of software products which can be utilized to implement the

method.

11

10

SOFTWARE
ISSUE

DEFINITION

13

SOFTWARE
ATTRIBUTE

MEASUREMENT

15

1
SOFTWARE
INDICATOR

GENERATION

17

SOFTWARE
QUANTITATIVE
ASSESSMENT

* ISSUE NOTIFICATION
* ISSUE PRIORITIZATION
* ISSUE-MEASURES REQUIREMENTS MAPPING

* ATTRIBUTE MEASUREMENT REQUIREMENTS
* MEASUREMENT METHODOLOGY
* DATA PROCESSING AND MANAGEMENT

* INDICATOR DEFINITION
* INDICATOR GENERATION

* CLARIFICATION
* EVALUATION
* PROCESS-PRODUCT CORRELATION
* RECOMMENDATION

FIG. 1

Ul o

en
O
LI-
CE
Ld

CO

XX
Ld Ld
2200

goo
<
Ld
CC
I—
GO

GO
00 Ld
00 x
LdX
O >
O H-

Ü. <

£5
X Ld
> 2
I— Ld
ü Ü
Z>
Q
O

0-

X
<

z
Ld

CM

>-

m
<
Q.
<
Ü

^Ld
S2 oo
00 z>
Ld Ld
Q CE

Ld

><

< -I
Ü Q_
Ld Ld

Ld
Q
O

<

Q ££ T7" p^u
\ ^Z)
00 2Q
1— so
o O Dd
o O D_

(N

oo
Ld
Ü
CX.
Z)
o
oo
Ld

'"t Ld
(N 200

Q_ Ld
J P»11

_J —
Ld —*
>ü
Ld <
Q U.

Ld

Q: Ld -21
O 00 _l h-
Q_-l Q_ CC
Q. O o Ld
DO Ld >
00 H- Ü- o

o
LL_

Ld
_J
X
Q
Ld
X
O
00

IS
TI

C

D
U

LE
 00

o
2 Ld

X o
ooo X

00

CM

O

< o z
00 L_
h- >

—) -t- t—

L

Ld
>
OO
00
Ld

Ld

Ld
IS
D_
O
_J
Ld _ <

£<Ld
Ld Q_ O

Ld

Q_

2

00
LT
Ld
ÜL
O
_J
Ld
>
Ld
Q

J
CO
CM

ü

O
O
OH

CO
CO

CO
CO

LU
2

CO
LU
O f—

z
o >- >- LU Id <f O I— Ü >-1-

CO

o o
z UJ
— Li_

z
Ul
1—

_J

2

>-
f—

_J

CD R
E

Q
U

IR

D
E

S
IG

N

C
O

D
E

 U_
CE
UJ
t— z P

R
O

D
U

A

LL
O

C
/

N
S

IS
TE

N

M
P

LE
X

IT

CD
<
Ld
Ü
<

>-
1—
_J

CD
<

™LdO 1— * * * ♦ * Ü o C£L Ixl
CO Q O CO o o h- QL

♦ * * * * * * #

I J
K)

o
LL_

co
CO
Ld
o
o
C£

o
Z i
LZ c£ u. o
< Lw
I— Lu
CO Ld

Ld
O
z
<

O H-

CO or ^
LdLdH-
r: CL o

OC0O
< O C£
b_ O 0_

Ld .- CO

CO
CO
Ld

00
CO

z Ld >^ i—

t- — P 3
^ > O O

_ H i=ZO
ü2<u.CL
O
QX # # * *

0_

CO
Ld

ÜC0
. Z Q
> LdCC
t=Q<
d Z Q
CD Ld z
< Q_ <

Ld
O

C£
o

CO Q
o

coo
###*** # * *

"V
J

K)

04
CD

I
OH
*<

en
I

O
UJ
O

CD
I

D_
LxJ
to

CD
I

cr>
I

OH

o
<7>

LÜ

o o o o o o o o o
o o o CD o o o o o
Ln o m o in o LO o LO

<
O Q
UJ
o

o
cr>

I
Q_
UJ
CO

O
CD

I

CD
en

I

en
oo

I o
UJ
o

ro NO OJ CNJ

FIG. 5

